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CHAPTER 1
INTRODUCTION

This chapler contains a statement of the problem considered in the
dissertation, the motivation for considering the problem, a summary of
the contents, and a brief survey of the literature on the control of
electromagnetic scattering from rudar targets.

The objective of the research reported herein is to investigate
the application of impedance loading techniques for the reduction of
backscatter from radar targets. A primary goal is to achieve tech-
niques for minimzing backscatter by controlling edge diffraction
sources. Edges are major contributors to backscattering for many
scattering geometries such as wing structures and finite conical
shapes.

The suppression of scattering is a camouflage problem, but over
the years the development of techniques for the reduction of specular
contributions has received most attention. Although the specular
contributions tend to be restricted in the aspect angles for which they
occur, they dominate the net return whenever they are present. How-
ever, the specular echoes are amenable to suppression using radar ab-
sorbers. On the other hand, non-specular scattering is more pervasive.
Even if all specular echoes are suppressed, the non-specular scattering
still can generate radar returns of unacceptable magnitude. In fact,
modern aerospace vehicles are often not seen at specular aspects in a
tactical environment. But the non-specular radar cross section can
sti1l reach levels that increase the probability of detection. It is
therefore important to study the backscatter reduction for non-specular
aspects.

In Chapter 1I the impedance boundary condition and the integral
equations appropriate in an antenna and scattering problem are ex-
amined. The low frequency numerical technique, the method of moments,
and the high frequency wedge diffraction theory are also discussed.
These theories provide the necessary theoretical background for the
applications in the later chapters.

Chapter III presents the hybrid methods which combine the
Geometrical Theory of Diffraction (GTD) and the Method of Moments.
These hybrid methods can be used to treat problems which can not be
solved by either GTD or moment method alone.

e e m— .




In Chapter IV, the hybrid methods are applied to study the back-
scatter reduction from various geometries such as the infinite wedge,
the thin strip and a two-dimensional wing model. The loadings required
for optimum reduction are also shown.

In Chapter V, the scattering from a thin square plate loaded with
a slot has been studied as a way of implementing the required antenna
impedance loading. The effect of loading as a function of frequency is
also presented.

A considerable amount of effort has been devoted to the reduction
of backscatter from various radar target geometries [1,2,3,4] over the
years. For modifying the radar cross section of scattering bodies,
two techniques have been used either separately or jointly; shaping of
the body and coating of the body with radar absorber. Recently, the
surface impedance model of absorber and the integral equations were
used by Knott et al. [5,6,7] to study the nor-specular radar cross
section.

A more encouraging method of reducing radar cross section is the
antenna impedance loading techniques [8,9]. The scattering from a
conducting object can be controlled by loading portions of its
surface with distributed or Tumped impedances. The scattered field
from a loaded object can be expressed as a superposition of fields
scattered by the unloaded object and fields reradiated by the loading.
The interference « ~these fields can therefore be used to control the
scattering. The impedance Toading technique has been applied to dipole,
cylindrical and Toop antennas to minimize the radar cross section [10,31].
The backscatter reduction in the broadside direction for a small plate
loaded with an open or short circuited slot was investigated by
Green [32].



CHAPTER 11
THEORETICAL BACKGROUND

A. Introduction

In this chapter the impedance boundary condition and the integral
equations appropriate in an antenna and scattering problem will be
examined. The purpose of this study is to show how the equations
are affected by the geometry and the boundary conditions. A general
procedure for solving lirear equations, the method of moments, will
be discussed. The wedge diffraction solution, which is a very im-
portant part of the Geometrical Theory of Diffraction, is also
presented. Each of these solutions are presented in their basic
terms in this chapter and applied to specific problems in the fol-
lowing chapters.

B. The Impedance Boundary Conditions

In its most straightforward form an impedance boundary con-
dition [11] is one which relates the tangential components of the
electric and magnetic fields via an impedance factor. The impedance
factor itself is a function of the properties of the surface. The con-
ditions are widely used in diffraction problems and the analysis of
surface wave phenomena. In this dissertation, the surface impedance is
employed to represent a loaded slot. Consider a closed cylindrical
surface whose generators are para]le] to the z axis of a cylindrical
coordinate system and whose profile in a plane perpendicular to the z
axis is the closed curve c. Let n be an outward unit vector to c and let
t be a unit vector in the tangential direction, such that £, n and z form
a right-hand system. Then, on the surface, the impedance boundary con-
dition is given by [12,13]

-

(1) E‘-(ﬁ-Eﬁ=zsﬁxH

where E and ﬁ'are the total electric and magnetic field, respectively,
in the region surrounding the body, which is that of free space for

the radar environment and Zg is the surface impedance. Zs may be a
function of distance t along the cylindrical surface c. For a perfectly
conducting surface, Zs = 0. Equation (1) can alternatively be ex-
pressed as [12,13]

@  R-GRAie-laxE
S

Equation (2) is the dual of Eq. (1) and is not valid if at any point
on the surface ZS is zero.



C. The Reaction .ntegral Equation

The reaction concept and its applications have been discussed by
Rumsey [14], Cohen [15], Harrington [16] and Richmond [17]. The
reactaon integral equation has been used extensively by Richmond [19,
30,33].

Let us consider the application of Schelkunoff's surface equiva-
lence principle [18] to the exterior scattering problem illustrated in
Fig. Ta. In the presence of a dielectric or conducting vody, the
external electric and magnetic cyrrents (Jj,Mj) gencrate the electric
and magnetic field intensities (E, %). For convenience, assume the
exterior medium is free space.

According to the equivalence principle, if we introduce the fol-
lowing surface current densities

(3) JS =n xH
(4) M= Exn

on the closed surface S ¢f the scatterer, the interior field will
vanish, without disturbing the exterior field. Since the field in-
ternal to S is zero, as illustrated in Fig. 1b, we can replace the
scatterer by free cpace without disturbing the field anywhere. By
definitign, the incident field (Ej,Hj) is generated by the external
source (Ji’Mi) in free space, and the scattered field is:

(6) HS = H - Hi .

From the superposition principle and the uniqueness theorem, we know
that the surface current (Js,Ms) which radiates in_free space wilil
generate the field (Es,Hs) 1in the exterior and ('Ei"Hi) in the
interior region, as shown in Fig. lc.
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Fig. la--The source (ji ,ﬁi) generates the field
(E,H) with scatterer.
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Fig. 1b--The interior field vanishes when the current (\Ts,ﬁs)
are introduced on the surface of the scatterer.
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Fig. 1c--The exterior scattered field may be generated by
(JS,MS) in free space.



With the scatterer replaced by free space and the equivalent
current on its surface S, we have noted in Fig. 1b that the interior
region has a zero field. Now let us place a test source or probe in
the interior region, as shown in Fig. 2, and consider its reaction with
the other sources. If the test source has electric current density J;
and magnetic current density'ﬁ;, the reaction principle gives

0 [ G R es = - [0 6, R as

. N
where (Eg,Hs) is the scattered field generated by (J},ﬁ;), and the
integrals extend over the surface of the test source. Equation (7)
is one form of the reaction integral equation (RIE). As noted by
Richmond [19], the RIE is more general than the electvic field integral
equation (EFIE) or the magnetic field integral equation (MFIE). If we
enforce Eq. (7) with a set of delta-function electric test sources, the
RIE reduces to the EFIE. If we enforce Eq. (7) with a set of delta-
function magnetic test sources, the RIE reduces to the MFIE.

From Eq. (7) and the reciprocity theorem, we obtain another form
of the reaction integral equation:

(8) ﬁ)s(a‘s-ft - F,-H,)ds + m (3; B, - A.-H,)dv = 0

where (f},ﬁ}) is the field of the test source radiat.ng in free-space.
In words, Eq. (8) states that the interior test source has zero re-
action with the other sources. This zero-reaction was developed by
Rumsey [14].

Combining the impedance boundary condition, Eq. (1), with the
equivalent current equations, Eqs. (3) and (4), gives:

(9) Ms=zsa‘sxn.

Equation (9) is another form of the impedance boundary condition. For
two-dimcnsional problems involving cylindrical scatterers, Js and
are functions only of the position t around the cylindrical surface c.

If j} vanishes, Eqs. (8) and (9) yield
10 3 . [F -(xH)zlt=|[[R -8B d.
(10) §l ¢ * [Ey - (nxH) 2] IJ j @ Ny s
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Fig. 2--A test source (J¢sMt) is placed in the interior region
of the scatterer.

D. Method of Moments

The method of moments [20] is a general procedure for solving
integral equations. It is widely used, with the help of high speed
digital ccmputers, in solving low-frequency electromagnetic antenna
and scatiering problems. Consider the linear inhomogeneous equation

L, @ =E

where Lop is_a linear operator, E is a known excitation function or
source, and J is the unknown response function to be determined.
Equation (11) may be the RIE, EFIE or MFIE.

The procedure for obtaining an approximate solution to Eq. (11)

can be summarized as helow. First, expand the unknown function in
a series of basis functions in the domain of the operator Lop’ as

(12) 3=§a J .
n



Substituting Eq. (12) into (11) gives

N = =
13 o L J)=E.
19 Yy Ly, B

S A
The next step is to define a set of weighting functions Wys Wy ooe in
the domain of Lop and then form the inner product

—_ RS N -
(14) rZ‘ o < W, Lop Jp = <wW . E>.

Equation (14) is a set of linear equations which can be solved for the
unknown @ by numerical techniques.

Two special cases of the moment method are of particular im-
portance in electromagnetics, namely; the Galerkin's method and the
point matching technique. The Galerkin's method uses the same set of
functions as the expansion and weighting functions. It requires the
evaluation of integrals which may be tedious and computationally ex-
pensive. This difficulty can be minimized if onc uses point matching
which uses the Dirac delta functions as testing functions.

E. \Vedge Diffraction

Wedge diffraction is a useful tool in the analyses of high-
frequency electromagnetic problems. The asymptotic solution for
the diffraction from a conduting wedge was first obtained by
Somme ~feld [21]. Originally, GTD [34] as applied to diffraction by a
wedge was based on plane wave diffraction coefficients; however, as
shown by Russo, Rudduck and Peters in Refs. [22,41], the use of dif-
fraction of cylindrical waves has been found necessary in the treatment
of antennas. Consequently, different formulations of wedge diffraction
were substi“uted for the plane wave diffraction coefficient which is the
basis for wedge diffraction theory. Pauli [23] introduced the Vg
function as a practical formulation to the solution for a finite-angle
conducting wedge. Recently, however, Hutchins and Kouyoumjian[24,
25] presented a formulation for the diffracted field (Vg), which sig-
nificantly improves the accuracy over that obtained from Pauli's
form.

This improved diffraction solution [24,25] is better in the
transition regions (near the incident and refleted shadow boundaries).
It can be written in the form

(15) Vg(Lsgsn) = I_ (L.g,n) + I (L,3,0)



where

e-j(kL+n/4)

TR

I, (LyByn)~ a cot X
i jnJE; Y 2n
A = . 2
olkla e 3T dr + [higher order terms]

where the higher order terms are negligible for large kr and

with n defined from the wedge angle WA =(2-n)x, also a = 1 + cos(B -
2ntN) and N is a positive or negative integer or zero, whichever most
nearly satisfies the equaticns

2niN - g = -n for I

2niN - g = +n for I,

T

Consider a plane electromagnetic wave normally incident on a wedge

of angle (2-n)n as illustrated in Fig. 3. Cylindrical coordinates
are employed here with the z-axis coincident with the edge and con-
sequently nornal to the plane of diffraction. The z-component of the
total field at observaticn point P(r,y) may be represented by the
scalar function u, given by

(16) u(rsy,n) = V(r,p-y,.n) E V(r.w+wo,n) .

The minus sign applies for the boundary condition u = 0 on the wedge
surface; thus the solution is valid for the electric field oriented
in the z-direction (parallel to the edge). The plus sign applies
for the normal derivative of u equal zero on the wedge surface, or
the magnetic field oriented in the z-direction (polarization per-
pendicular to the edge). The quantities V(r,¢,n) represent the
separation of the solution into incident and reflected waves and

are given by

(17) V(r,e,n) = Vi(r,¢,n) + VB(r,¢,n)

where V* is the geometrical optics wave which is given by



[

exp[jkr cos(¢+2mnN)], if -m<¢+2mnN<n
(18) V*(r,é,n) = for N=0, +1,:2 ...

0, otherwise.

b

INCIDENT SHADOW \
BOUNDARY ——%,

» REFLECTION SHADOW
“&«— BOUNDARY

/e
\ i

ra .P('o¢)

Fig. 3--Diffraction of a plane wave by a conducting wedge.
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CHAPTER III
HYBRID METHODS

A. Introduction

For many years, GTD has been applied to high-frequency antenna
and scattering problems for which the structure is large in terms of
wavelength. GTD solutions have mainly been used in pattern com-
putations with Tittle information concerning antenna impedance
and/or aperture distribution. This is especially true for wire-
type antennas. On the other hand, the method of moment has been
applied to low-frequency problems for which the structure is small
in terms of wavelength,

A hybrid method (MMGTD) to combine the GTD and the Monent
Method was used by Burnside [27,28] to investigate the scattering
of a TE plane wave by intinite conducting structures. In this
chapter, the original hybrid method is extended to treat infinite
geometries with local inhomogenities which can not be solved by
either GTD or moment method alone. While the method gives good
results for finite geometries, it fails to predict the fields of
infinite structures accurately. A modified hybrid method, which is
more accurate and economical in computation, is intrcduced. The modi-
fied method can be applied to geometries with local surface impedance
if the surface current density for the conducting case is known. The
modified method was first suggested by Rudduck.

B. A Hybrid Method

Consider the scattering by a simple perfectly conducting wedge for
a TE plane wave incident as shown in Fig. 4. At the field point {p,v),
the incident field i5 given by

i Jke cos(y-y,)
Hz(o,v) =g ' for {w-wol < 1ere

The reflected field from the wall along the x-axis of Fig. 4 is given
by

jke cos(yty )
H;(Ds‘b) =e &

for |¢+¢o| < 180°
The diffracted field can be expressed as [26]

H(osu) = Vglosumug-n) + Vglosuby un).

1



PERFECTLY
CONDUCTING
WEODGE

WA=(2-n) 7=

\\\\L\L\\\-;);)));.
3 00

(p,¥)
OBSERVATION
POINT

Fig. 4--Plane wave diffraction by conducting wedge.

PLANE WAVE INCIDENCE

If the observation point is not in the vicinity of a shadow boundary
(w*wo = 180°) and for p sufficiently large, the diffracted field can
be expressed by [26]

e-Jko

B

(190 Hlos9) ¥ [D(y=yyon) + Dlutugun)]

where

s T
=i+ (1 ... m \
4 |=sin -
D(6.m) == | "

T o ane &
J2nk cos - cos j

is the asymptotic diffraction coefficient in GTD. The total magnetic
field can then be expressed, using the above form of the diffracted

field, by

12



t o i r, d
(20) H(ps9) = H, + H +H
. -jkp
X Hy + HD + Cysyen) £
JF

where C is independent of the range (p). The total surface current
density on a perfectly conducting surface can be obtained by applying
the boundary conditions, and is given by

_.I= 2 £ t
Jd=(nx z)Hz
where n is the unit outward normal vector to the surface. Using the

GTD solution for the total magnetic field, the total surface current
density along the wedge walls is given, for p sufficiently large, by

vFla i r d
(21) J = (n x z) [HZ + Hz + Hz]

o~Jko

P33T+ (0 x 2) Clusgen)
yip

Equation (21) is also va'!id for wedges with local inhomogenities around
the tip, assuming that the wedge surface is not in the vicinity of a
shadow boundary and p is sufficiently far away from the local in-
homogenities.

Note that C is now assumed to be an unknown constant, although it
can be obtained from a canonical solution for the perfectly conducting
case. The hybrid approach can be applied to a set of problems where
the coefficient C is not known at the outset.

The magnetic field integral equation for cylinders with arbitrary
anisotropic surface impedance is given by [29]

1 ¢ A
(22)  -Hi(s') = 3 9(s') + %J =i 6) W) (k33 )0s
S
ol PO R v T
s [6'-p

where the time dependence is assumed to be e+3”t and is suppressed, the
integrals are extended over the contour S of the cylinder cross section,

13



n is the outward normal to the contour S, and ny is the intrinsic im-
pedance of free space. Consider the impedance-loaded wedge structure
as illustrated in Fig. 5, the total surface current density can be
defined by

JgTD hC <h<o on h-wall
(23) g =M 0<h<h on h-wall
JSTD KSR [ on x-wall
JEM 0 <x < X on x-wall

where JGTD is defined by Eq. (21) which is valid only away from the
impedance or the tip. The method of moment current (JMM}) around the
inhomogenities can be defined by simple basis functions such as

N

MM _ i
(24) J = mz] aum(S sm)

where Pm(s-sm) are orthogonal pulse functions with weight L

Applying the point matching technique at the midpoint of each of
the N pulse segment, one obtains

N
GTD GTD, _
(25) mZ] % nm * Ln(Jh )+ Ln(‘Jx ) = In
for 1 <n <N
where
o s . op=e’): N
% J {j%;__ Héz)(klpn‘p'l) +)— Hfz)(klon‘ol)JdS
dspt o PP m#n
fam
z vkas
1,k s .2 n
2% 5, % (! 1"(4e ) e
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@®
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. e -
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PLANE WAVE
INCIDENCE

Fig. 5--Impedance loaded wedge applied in hybrid methods.

e = 2.71828,

Yy =1.781..1s the Euler's constant,

-y
g, = -H, (xs¥,)

and

15



z S
(26) Ln(JGTD) = '_(_ JGTD __?]__ Hc()Z)(kIpn'pl |)

a
GTD 0
(b -p")-n .
+i. = H{Z)(k|pn-p'|) ds
lo, = 0"l

Note that the first term in Eq. (26) vanishes because Zg = 0 in the
GTD region. Substituting Eq. (21) into Eq. (25) gives

N . -jkh
1 r e
(27) I oo+ L (Jh +, + 0 )

m=1 Jq;

il r e-jkx
+Lan+Jx+Dx'/_x_— gn 1<nc<N

where the second term exists on the h-wall and the thjrd term on the
x-wall. Since the incident and reflected currents (J! and J") can be
easily obtained by geometrical optics, they can be transferred to the
source side. Since Dy and Dn are just complex constants, by applying
the linear property o¥ the operator Ln' Eq. (27) can be written as

e-jkx
Jx

=g, forT<nc<N

1 o

N e-jkh
(28) ) aptrn * Ot | =+ DL
where

T - .9 igr
I = Hz(xn’yn) Ln(Jx+Jx) Ln(Jh+Jh)

X n

-jkx |z (o.=) N
29 L € z L S H(z) k = iy +3 n H(Z) K o
(29) n(r—) 4ch . 5 (lpnpl).)——a,n_;;I 1 (klp,=e])

e-ka

Ix"

dx'

16



. h > ~
(30) L (e ) —j S W@ ke 2 = W (k|7 -5])
U ry 4 "o 0 n o - ol 1 n
-jkh'
x & dh’
’hl
( ™ . _\) PN
z D (p =p)*n N
2| K| Bl P e ) ] -21)
X 0 P, =P
c n
i jkx'cosw0
(31) L (9,40, )= 7 X e dx'  for 0° <y, < 180°
0 otherwise
L
" R 3 -
c,|Z (o, =p)n
k S 2 S - 2 S
21 12— 0B e S S & (5, -p)
0 PyPl
. jkh'cos(e—180°+wo)
(32) Ln(J”+Jh)=ﬁ X e dh' for 180°-B§W°§360°-B
0 otherwise .

So far, we only have N equations obtained by point matching in
the moment metkod region. However, there are N+2 unknowns, N coeffi-
cients of the current pulses (ap's) in the moment method region and
two diffraction coefficients (Dx and Dp), one in each GTD region.

Two additional equations are obtaired by introducing one addi' ‘onal

matching point in each of the two GTD regions. Matching at (xd,O) on
the x-wall gives

17



-y 1 >
- HZ(xd'o) 2 (JX JX)X X (Jh+Jh

Similarly, matching on the h-wall gives

(34) ? 1o e o, L (¢ gk )
ad o+ + s
L ' 2 j;; J

e i ey
= -Hy(h=hy) -5 (+l) =h, "t Ot -

Now we have N+2 equations to solve for N+2 unknowns. This system
of simultaneous linear equations can be easily solved by the numerical
matrix inversion technique.

The integrations over the GTD region are infinite in theory; how-
ever, in rractice, one can approximately carry out the integration
over a finite region because the Hankel function causes the integrand
to become negligible for large value of p'.

The above approach is valid except near the shadow boundaries.
In order to solve for the diffracted currents on or near a shadow
boundary one should represent the diffracted currents in terms of an
infinite series as given by [28]

® -jkg
2=0 \e)

However, in practice, if the currents are analyzed directly along a
shadow boundary, then the diffracted current can be simply expressed

by [28]

d -jkp

Jo = C0 e
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The hybrid method gives good results for finite bodies. But it
fails to determine the diffracted field of an infinite structure
accurately. The values of Dy and Dy are found to be sensitive with
respect to the position of the GTD matching points in the case of
infinite geometries. This appraoch also re u&;es extensive numerical
1ntegrat1on to evaluate the coefficients L ? D) and the excitation
g of the matrix equation.

C. A Modified Hybrid Method

The key to the modified hybrid method is to separate the total
surface current of the impedance-loaded wedge into two components,
namely: the current for the perfectly conducting case, Jc: and the
change in current due to the presence of the surface impedance, AJ.
Substituting J = JC + 4d into Eq. (22) gives

Z
(35) -Hi(s') = T .(s') + 4J =9 (s) W) (k|3 -p])ds
S 0
e 3 ots) LD 5 s
s lo'-p|
1 g0y K[ 5 (2)
+ L aa(s 4L 2 09(s) W2 (k5 -7l)es
S

gk | Aa(s)|£"-'—;iz’—'ﬂ 1) (k[ -5 )ds
p'-p

Since J_ satisfies the special case, Z =0, of the integral equation,
1ep 3

) W) = Fogtsn o [ am%?—n‘“mp 21)ds

Eq. (35) reduces to
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z PN Y
(37) - %-{ i J (s)H 2)(kjo‘-p0ds = 5 :d(s')
s o
z . N
fE 0 M@ ke + Jﬁj a(s) dozelon
s m 4 P

W (5 Tes

Define the change in surface current density as

7

AJGTD h. < h < = on h-wall
AJMM 0 <h < hc on n-wall
Sl G
a®! s bl = on x-wal
W 0& X E on x-wall
\
GTD -jke
where 2J has the form of 2D (e )//©, and the moment method

incremental current can be expressed in terms of cimple orthogonal
pulse function, such as

N
M- y
m=1

By point matching at the center of each pulse, one obtains

-ij\ !
Ae i+ aDL | E aD_ L& =g 1 <n<N
me] Mo X n(‘[;- )+ h n\fﬁ‘ ;o =W

where an and Ln are the same as in section B and

He~-1=

(38)

Z
s g ()2 (k!

S0 [
(39) 9 ° a ”S ¥ ¢ 0

n
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Again, two additional egquations will be obtained from the matching

in the GTD regions. A system of N+2 simultaneous linear equations

will be solved for Aaas and ADx’ ADh, by numerical matrix inversion
technique.

It should be noted that two of the integrals in Eq. (37) are
limited to only the contour where Zg is non-vanishing. Consequently,
for conducting scatterers with small inhompgenities with Zg # 0
those two integrals can be readily and accurately evaluated. Further-
more, as a consequence of separating the current J. for the perfectly
conducting body, the geometrical optics currents are not included
in the third integral of Eq. (37) which involves AJ. Thus the third
integral converges rapidly because only diffracted components are
included in ¢J. Those features of the aJ approach result not only
in significantly improved efficiency, but also provide reasonable
accuracy for the diffracted fields. Computer solutions of the integral
equations typically result in accuracies of a few percent. Thus aJd
and the resulting diffracted current can be calculated to within a
few percent. However, the original .ybrid method of Eq. (22) yields
the same accuracy for the total current. This results in very poor
accuracy for the diffracted component which is typically a small
fraction of the total current. This "AJ" approach has then a
distinct advantage if one wishes to isolate the diffraction of some
isolated anomally in the presence of an edge.
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CHAPTER 1V
THE REDUCTION OF BACKSCATTERED FI LD --- TWO-DIMENSIONAL CASE

A. Introduction

Edge diffracted fields become a dominait contributor to the scat-
tered fields for a wide variety of geometries. These usually are
significant when the observation point is not illuminated by a specular
field. Some examples include: the cone for near axial incidence, the
leading or trailing edge of a wing for sufficiently low frequencies.
These fields are generally considered to be low but this is only
wheg considered with respect to the specular contribution from a
surface.

It is the goal of this study to achieve further reduction of
back scattered fields from the edge diffraction mechanism over
reasonable range of incidence angles and broad frequency band by use
of antenna impedance loading. Absorbing material was often used in
the study of backscatter reduction. However, it is usually necessary
to cover a substantial part of the body of an aircrait or space craft.
The presence of a large absorber could seriously affect the performance
of the aircraft. This is not desirable because it would require the
redesign of the whole aircraft structure. In this chapter, the
possibility of designing an antenna to scatter energy at least in
some direction or range of directions in such a way to cancel or
reduce the edge diffracted field in that range of direction is con-
sidered. Surface impedance is used to model slot antenna. The hybrid
methods discussed in Chapter III are employed to treat various geometries
and the results for optimum loading are also presented.

B. The Triangular Cylinder

The reaction integral equation and the Galerkin's method with a
piece-wise sinusoidal basis, developed by Richmond [30], is used to
study the scattering by a two-dimensional, triangular wedge-shaped
cylinder. The scattering geometry of a triangular cylinder is quite
suitable for providing information on the effectiveness of impedance
loading for backscatter reduction. Furthermore, this geometry provides
efficient numerical results. Results on optimum loading configurations
obtained from this geometry will be directly applicable to a wide
variety of scattering geometries such as conical shapes and ogive
shape or similar wing structures.

In order to isolate the effect of the impedance loading a source
excitation is being used that consists of two line sources located on
the cylinder surface and phased to null out the effect of the other
edge. The wedge-shaped cylinder without impedance loading can readily
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be analyzed by the GTD or wedge diffraction approach. The wedge dif-
fraction analysis for the unloaded cylinder was programmed as a check
case. The value of the wedge diffraction check was demonstrated when
it revealed an insufficient number of piece-wise sinusoidal monopoles
were used in the reaction integral equation program. The results ob-
tained by using 4 segments in one wavelength and the GTD results are
shown in Fig. 6. The difference between these two results is sig-
nificant. However, if 8 segments in one wavelength are used, the
result agrees well with the GTD result (see Fig. 7).

Due to limitations on the dimensions of the wedge cylinder that can
practically be used in the reaction integral equation program on the
DATACRAFT 6024 computer, results can only be obtained for cylinders
on the order of 2.5x or smaller in width. However, several promising
results have been obtained using the integral equation program. These
results indicate that considerable reduction can be achieved in
the backscattering from the edge diffraction mechanism. In one case
a reduction of 14 dB was obtained using a real impedance loading of
377 ohms located right at the edge as shown in Fig. 8. The com-
puted results also show that similar reduction can be achieved by a
reactive loading of ZS = -j188 ohms located 5/8x from the edge, as
shown in Fig. 9.

The backscattered fields of such a wedge geometry have also been
computed as a function of incidence angle and surface impedance. This
analysis shows the reduction of the edge diffracted field discussed
above is maintained from angles of zero (preceding case) to about 60°
when the surface impedance is at the edge. Figure 10 shows the back-
scattered fields with zero and 188 ohms surface impedance. Note that
the lobes are decreased from 40°-100°. For plane wave incidence as
shown in Fig. 10 the effect of the edge that does not have impedance
loading cannot be isolated from the edge with loading. Consequently,
the reduction in backscatter as shown in Fig. 10 represents a considerable
reduction achieved by the loaded edge. This corresponds to the re-
duction achieved in Fig. 8, but also demonstrates the wide angle
coverage that can be achieved. Thus, the above analysis does indicate
that the desired control can be achieved.

C. The Infinite Wedge

The hybrid methods discussed in Chapter II were programmed for
the analysis of the infinite wedge with impedance loading. The total
current on a perfectly conductiny wedge surface was calculated by the
hybrid method of Eq. (22). The current was sampled using a 0.1 o~
smaller spacing between sampling points in the MM region. The moment
method region is 11 in length and each GTD matching point is 1.25)
away from the edge tip. Results for the surface current density and
the diffracted field of a 30° conducting wedge with plane wave in-
cidence are compared with GTD, as shown in Figs. 11-12. Although the
original hybrid method was found to yield reasonable results for the
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total current and high-level fields of the scatterer, it fails to
accurately predict low-level fields such as diffracted fields, as

seen in Figs. 11-12. Consequently, the original hybrid method was found
to be inadequate to analyze the performance of impedance techniques.
After some research it was found that the original hybrid method

could be extended to provide accurate results for iow level dif-

fracted fields.

As has been noted the key to the modified hybrid method is to
seperate the surface current of an impedance loaded scatterer into
two components: the current J¢ for the perfectly conducting scatterer
and the change in current aJ due to impedance loading. Since the cur-
rent J¢c for the perfectly conducting wedge is known, the current AJ
on an impedance loaded wedge can be solved using the modified hybrid
method. The current AJ is sampled using a 0.1 or smaller spacing
between sampling points in MM region. Since the current aAJ decays
rapidly away from any impedance loadings, the integrals of the modi-
fied method converge rapidly. This results in improved efficiency as
well as accuracy compared to that of the original hybrid method.

The results of reduction in backscatter that can be achieved by
impedance loading are shown in Figs. 13-18. A reduction of more than
15 dB is obtained in an angular range of 20° from grazing incidence for
both 30° and 60° wedge. These reductions were also demonstrated at
three different frequencies representative of a 3:1 frequency band.

The impedance loading required over the continuous frequency range

was also calculated. The required surface impedance loading over

the 3:1 frequency range and the reduction in backscatter from the 30°
infinite wedge are given in Table 1. The surface impedance is plotted
on a Smith chart in Fig. 19.

D. The Square Cylinder

The accuracy of the modified hybrid method was checked against the
integral equation or moment method solution for the 4A square cylinder
with impedance loading as shown in Fig. 20. This cylinder size is
close to the limit possible with the pure moment method. The accuracy
of the modified hybrid method was found to be better than 6% even for low
level fields. The computed results of the two methods are so close that
the difference can not be seen on Fig. 20.

The scattered field from a square cylinder is shown in Fig. 21.
The results for this case were calculated by all three metiinds: the
moment method, the modified hybrid method and the original hybrid
method. It was found that the original hybrid method gives good
results for the 4x cylinder in contrast to the case of the infinite
wedge. Thus it can be concluded that the original hybrid method is
sufficiently accurate for finite size scatterers for which the in-
tegrations involved in the original hybrid method are not truncated.
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TABLE I
REDUCTION OF BACKSCATTER AT GRAZING INCIDENCE FOR 30° WEDGE

ZS/no d/a w/ Reduction (dB)
.75+31.6 0.05 0.05 25
.85+31.0 0.06 0.06 23

7 +j0.3 0.07 0.07 19.5
.45-30.1 0.08 0.08 18
.15-30.3 0.09 0.09 21

9 -j0.5 0.1 0.1 30

7 -j0.55 0.11 0.11 21.5

5 -j0.6 0.12 0.12 21
.35-j0.6 0.13 0.13 23
.23-30.6 0.14 0.14 27

1 -j0.6 0.15 0.15 24

a
QW 30°
— - 0
d w
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from an infinite wedge over a 3:1
frequency band.
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Fig. 21--Scattered field of conducting square cylinder
with surface impedance loading.
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E. A Two-dimensional Wing Model

The original hybrid method was used to analyze the two-dimensional
wing model shown in Fig. 22(a). This wing model should provide a good
simulation for a practical aircraft wing cross section. However, the
small wedge (angle *6°) of the wing model of Fig. 22(a} was found to
cause a computational problem in the application of the hybrid method.
After investigation of this problem it was discovered that the small
weuge angle causes some of the matching points used in the point
matching region around the edge to be too close for practical computation
as shown in Fig. 22(b). This problem was overcome by truncation of the
wedge tip as shown in Fig. 22(c). The truncation still permits a
practical analysis of the edge loading because the trailing edge of
the wing is very thin in wavelengths.

The current in the MM regions is again sampled using a 0.1x or
smaller spacing between sampling points. Since the primary interest
is in the angular range which is close to grazing to the wedge arm,
the diffracted currents from the wedge-cylinder jupction are analyzed
along or near the shadow boundary. The form Dye~JK% + Dy (e-Jk2)/v
is used for the diffracted currents from the wedge-cylinder junction,
while D (e=Jkh)4/h is used for the diffracted currents from the wedge
tip, as shown in Fig. 23.

The backscatter reduction of the two-dimensional wing model as a
function of wing size and geometry, including the effect of the leading
edge, has been investigated. The scattered fields for Zg = 0 and
Zg = ny on the leading edge were checked by using the hybrid method
and the moment method for a = 0.075x, 0.1x, 0.15x, 0.2x, 0.25)x and
0.3x. Figures 24-25 show some of the typical checks. Tables II and
111 show the backscatter reduction from the leading and trailing
edge for various wing size. The leading edge is dominant for wing
radii greater than 0.1A. However, the leading edge contribution can
be reduced by more than 12 dB for a > 0.2x, as shown in Fig. 26. This
is achieved by covering the leading edge with a surface impedance
I; = ng. For wing radii smaller than 0.1), the trailing edge con-
tribution is more important. By loading the trailing edge with a 0.1x
wide surface impedance, the backscatter for a thin wing can be reduced
by 10.19 dB, as shown in Fig. 27. The backscatter reduction from the
leading and trailing edge, respectively, as a function of incidence
angle is also calculated and shown in Tables IV and V. It is seen
from Fig. 28 that further reduction can be obtained if both edges are
loaded. The reduction in Fig. 28 is 11.33 dB, compared to 5.79 dB
when only the leading edge is loaded and 5.37 dB when only the trailing
edge is loaded.
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Fig. 22--Point-matching problem for small-angle wedge.
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Fig. 24--Comparison of bistatic scattered fields obtained
using MM and MMGTD solutions for a wing foil with
impedance loading.
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TABLE II

BACKSCATTER REDUCTION BY LOADING THE LEADING EDGE

Radius (a)

0.3x
0.25x
0.2x
0.15%
0.1a
0.075x

.
=

Backscatter Reduction (dB)

Moment Method

17.77
14.89
12.28
9.42
5.85
3.30

rk/a:xr—’—"“'\

O.1x

TABLE III

MMGTD

18.00
14.92
12.24
9.40
5r 78
3.30

-

N

To

BACKSCATTER REDUCTION BY LOADING THE TRAILING EDGE

Radius (a)

0.3x
0.25x
0.202
0.15x
0.10x
0.075x

Backscatter Reduction (dB)
-1.0
0.05
1.29
2.06
5.37
10.19
5hf’—""\
LFQT/
r -I-_H.I_.
d w
Q.1
d=w=0,IX
i .
Mo 1.0—j-0.6
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Fig. 26--Comparison of bistatic scattered fields for wings
with and without impedance loading.
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TABLE IV
BACKSCATTER REDUCTION OF WING MODEL AS A FUNCTION OF INCIDENCE ANGLE
Incidence Angle (o) Backscatter Reduction (dB)
0 18.00
3 17.57
8 16.47
10 12.08
\‘,/-51-"""'\
L .
O.Ix ‘hz‘ =7,
TABLE V
BACKSCATTER REDUCTION OF WING MODEL AS A FUNCTION ON INCIDENCE ANGLE
Incidence Angle (o) Backscatter Reduction (dB)
0 10.19
5 11.13
10 3.12
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Fig. 28--Comparison of bistatic scattered fields for wings
with and without impedance loading.
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F. The Thin Strip

The infinitely long thin strips of 1 and 2 wavelength wide and 0.1
wavelength thick are studied by moment method. The backscatter reduction
will be used to check the results obtained from a three-dimensional
finite thin plate discussed in Chapter V. Typical results for 1 and
2 wavelength strips loaded with a 0.1) wide surface impedance are
shown in Figs. 29 and 30. Tables VI and VII show the backscatter
reduction as a function of incidence angle.
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Fig. 29--Comparison of bistatic scattered fields for strips
with and without impedance loading.
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TABLE VI
BACKSCATTER REDUCTION OF THIN STRIP AS A FUNCTION OF INCIDENCE ANGLE

Incidence Angle (8) Backscatter Reduction (dB)
0 15.61
3 14.97
5 13.83
10 8.97

p o "

L 8

L dw
O.1A
2
d=w=0.I\ 2 207-j'06
Mo
TABLE VII
BACKSCATTER REDUCTION OF THIN STRIP AS A FUNCTION OF INCIDENCE ANGLE
Incidence Angle (o) Backscatter Reduction (dB)
0 16.45
3 15.89
5 13.39
10 5.45
r3 =y
Lr"ﬁ —I/%
=
'¥_- dw
0.1\
d=w =0.I\ 2s -0.7-j-06
No
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CHAPTER V

THE REDUCTION OF BACKSCATTERED
FIELD --- THREE-DIMENSIONAL CASE

A. Introduction

The results previously discussed yield the necessary surface
impedance loadings required to achieve reduction in the backscatter.
However, a way to practically implement the required surface impedance
is also needed. One of the most promising ways to implement the sur-
fﬁce ;mpedance is a collinear array of rectangular slots located along
the edge.

In this chapter,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>